Synthetic lethal targeting of PTEN-deficient cancer cells using selective disruption of polynucleotide kinase/phosphatase.

نویسندگان

  • Todd R Mereniuk
  • Mohamed A M El Gendy
  • Ana M Mendes-Pereira
  • Christopher J Lord
  • Sunita Ghosh
  • Edan Foley
  • Alan Ashworth
  • Michael Weinfeld
چکیده

A recent screen of 6,961 siRNAs to discover possible synthetic lethal partners of the DNA repair protein polynucleotide kinase/phosphatase (PNKP) led to the identification of the potent tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Here, we have confirmed the PNKP/PTEN synthetic lethal partnership in a variety of different cell lines including the PC3 prostate cancer cell line, which is naturally deficient in PTEN. We provide evidence that codepletion of PTEN and PNKP induces apoptosis. In HCT116 colon cancer cells, the loss of PTEN is accompanied by an increased background level of DNA double-strand breaks, which accumulate in the presence of an inhibitor of PNKP DNA 3'-phosphatase activity. Complementation of PC3 cells with several well-characterized mutated PTEN cDNAs indicated that the critical function of PTEN required to prevent toxicity induced by an inhibitor of PNKP is most likely associated with its cytoplasmic lipid phosphatase activity. Finally, we show that modest inhibition of PNKP in a PTEN knockout background enhances cellular radiosensitivity, suggesting that such a "synthetic sickness" approach involving the combination of PNKP inhibition with radiotherapy may be applicable to PTEN-deficient tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic screening for synthetic lethal partners of polynucleotide kinase/phosphatase: potential for targeting SHP-1-depleted cancers.

A genetic screen using a library of 6,961 siRNAs led to the identification of SHP-1 (PTPN6), a tumor suppressor frequently mutated in malignant lymphomas, leukemias, and prostate cancer, as a potential synthetic lethal partner of the DNA repair protein polynucleotide kinase/phosphatase (PNKP). After confirming the partnership with SHP-1, we observed that codepletion of PNKP and SHP-1 induced ap...

متن کامل

NLK Is a Novel Therapeutic Target for PTEN Deficient Tumour Cells

PTEN (Phosphatase and tensin homolog) is a tumour suppressor gene commonly defective in human cancer, and is thus a potentially important therapeutic target. Targeting tumour suppressor loss-of-function is possible by exploiting the genetic concept of synthetic lethality (SL). By combining the use of isogenic models of PTEN deficiency with high-throughput RNA interference (RNAi) screening, we h...

متن کامل

Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy

Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of P...

متن کامل

Phosphatidylinositol 3-kinase/Akt signaling as a new therapeutic target in acute myeloid and lymphoid leukemias

Signaling pathways play critical roles in cancer initiating cell (CIC) growth, differentiation, drug resistance and sensitivity to various therapeutic approaches. This presentation will discuss the key roles that the PI3K/ PTEN/Akt/mTOR/Gsk-3b pathway plays in therapeutic sensitivity of breast cancer. We isolated CIC from three different breast cancer cell lines (MCF-7, T47D and MDA-MB-231) by ...

متن کامل

Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases

Pten (Phosphatase and tensin homolog deleted on chromosome 10) is a recently identified tumor suppressor gene which is deleted or mutated in a variety of primary human cancers and in three cancer predisposition syndromes [1]. Pten regulates apoptosis and cell cycle progression through its phosphatase activity on phosphatidylinositol (PI) 3,4,5-trisphosphate (PI(3,4,5)P(3)), a product of PI 3-ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 2013